National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Condensing steam turbine for a sugar factory
Kovaříček, Jakub ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
The main topic of the thesis Condensing steam turbine for a sugar factory is a comparison of the methodology for the design of twisted blades of the last low-pressure stages of a condensing steam turbine. The work is divided into the five parts. In addition to the Dunham, Pritchard and Trigg methodologies described in detail, the research in the first part also deals with other, briefly described methods. In the second part, a preliminary calculation of the thermal scheme in which the turbine should be operated is performed. An air condenser is selected behind the turbine. The third part is devoted to the preliminary and detailed calculation of the control degree. The next part deals with the preliminary thermodynamic calculation of the turbine, which has an overpressure blade and is divided into seven flow cones. The content of the following fifth part is a detailed design of the geometry of twisted blades of the last stage. The importance of twisting the blades in terms of efficiency is described here and it is possible to look at the issues of the whole process. The profile of the blades is modeled in detail using two methods and then compared on the mean diameter with the third method, which is modeled only in one section. While the Dunham method is the most time-saving, the generated blade shape is not ideal compared to the more time-consuming methods. The appendix contains a simplified drawing designed for stator and rotor blades.
Condensing steam turbine for a sugar factory
Kovaříček, Jakub ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
The main topic of the thesis Condensing steam turbine for a sugar factory is a comparison of the methodology for the design of twisted blades of the last low-pressure stages of a condensing steam turbine. The work is divided into the five parts. In addition to the Dunham, Pritchard and Trigg methodologies described in detail, the research in the first part also deals with other, briefly described methods. In the second part, a preliminary calculation of the thermal scheme in which the turbine should be operated is performed. An air condenser is selected behind the turbine. The third part is devoted to the preliminary and detailed calculation of the control degree. The next part deals with the preliminary thermodynamic calculation of the turbine, which has an overpressure blade and is divided into seven flow cones. The content of the following fifth part is a detailed design of the geometry of twisted blades of the last stage. The importance of twisting the blades in terms of efficiency is described here and it is possible to look at the issues of the whole process. The profile of the blades is modeled in detail using two methods and then compared on the mean diameter with the third method, which is modeled only in one section. While the Dunham method is the most time-saving, the generated blade shape is not ideal compared to the more time-consuming methods. The appendix contains a simplified drawing designed for stator and rotor blades.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.